

Reg No.:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIFTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DEC 2019

Course Code: EE303

		Course Name: LINEAR CONTROL SYSTEMS		
Max. Marks: 100		larks: 100 Duration: 3	tion: 3 Hours	
		PART A Answer all questions, each carries 5 marks.	Marks	
1		Explain Mason's gain formula?	(5)	
2		Obtain the unit step response of first order system?	(5)	
3		A unity feedback system has an open loop transfer function $\frac{20(s+5)}{s^2(s+0.1)(s+3)}$.	(5)	
		Determine steady state error for unit parabolic input?		
4		Explain the effect of adding poles and zeros on root locus?	(5)	
5		Sketch the bode plot for given $G(s)H(s) = \frac{10}{s(s+2)}$ without using semi log sheet?	(5)	
6		Explain about frequency domain specifications?	(5)	
7		Draw the polar plot of type 0 second order system?	(5)	
8		Explain transportation lag and non-minimum phase systems?	(5)	
		PART B Answer any two full questions, each carries 10 marks.		
9	a)	Write the differential equations governing the mechanical system and hence draw the electrical analogous circuit using F-V analogy and F-I analogy	(6)	
		X_2 B		

b) Derive the transfer function of an armature controlled dc motor with block (4) diagram?

COLLEGE OF ENGINFERING

LIBRARY

(6)

10 a) Obtain the overall transfer function using block reduction techniques?

- b) What are the standard test signals used for time domain analysis? (4)
- Derive the expression for maximum peak overshoot, rise time and peak time of a (6) second order system for a step input?
 - b) Explain the construction and working principle of a synchro transmitter? (4)

PART C Answer any two full questions, each carries 10 marks.

- 12 a) Evaluate the static error coefficients and steady state error for a unity feedback (6) system having a forward path transfer function $\frac{50}{s(s+10)}$ for the input $r(t)=1+2t+t^2$
 - b) Explain important rules for root locus? (4)
- Sketch the root locus for a unity feedback system with open loop transfer (10) function $\frac{k}{s(s+2)(s+3)}$ and find the range of k for the system to exhibit sustained

oscillations?

- 14 a) Find the location of roots of the characteristic equation $s^6+4s^5+3s^4-16s^2-64s-48=0$ in LHS, RHS and imaginary axis.
 - b) Determine (i) type (ii)error constants (iii) steady state error for the parabolic (5) input if the open loop transfer function is $\frac{12(s+2)}{s^2(s^2+7s+12)}$

PART D

Answer any two full questions, each carries 10 marks.

- Sketch the polar plot for the following transfer function $\frac{10}{s(1+s)(1+0.05s)}$. (6)
 - b) Explain gain margin and phase margin of a system using Bode plot? (4)
- Find the value of open loop gain k for $G(s)H(s) = \frac{k}{s(1+0.1s)(1+s)}$ so that the (10) system has a) phase margin of 60° b) gain margin 15 dB using Bode plot
- For the system shown in figure determine the stability using Nyquist plot. (10)

