Pages:	3

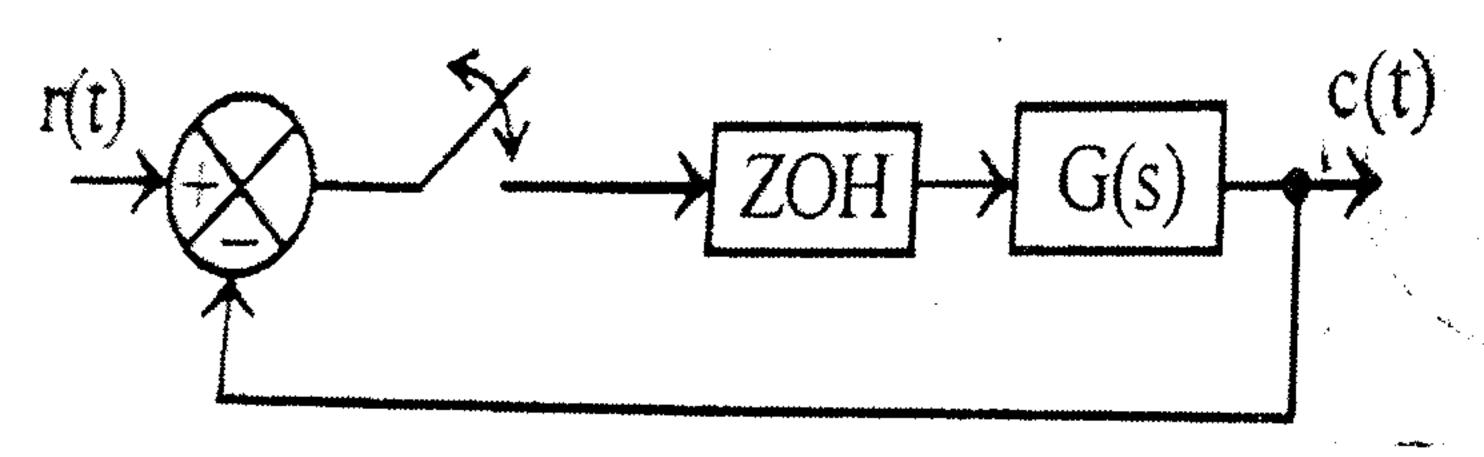
Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019

Course Code: EE304

Course Name: ADVANCED CONTROL THEORY

Max.	. Mark		tion: 3 Hours
		PART A Answer all questions, each carries 5 marks.	Marks
1		Compare the effects of P, PI and PID controllers on the closed	(5)
		loop system performance in terms of rise time, peak overshoot,	
		settling time, steady state error and stability.	
2		What are the effects of Lag and Lead compensators on the system performance?	(5)
3		Explain the terms (i) state (ii) state variables (iii) state vector (iv) state space (v) state trajectory of a system. What is pulse transfer function? Derive the transfer function of a ZOH circuit.	(5)
4			(5)
5		State any five characteristics of Nonlinear systems.	(5)
6		Define Describing function. Explain how describing function can	(5)
		be used for stability analysis of nonlinear systems.	
7		Define Singular point. Explain the nature of Eigen values of	(5)
		system matrix for any five types of singular points.	
8		Explain Liapunov second method of stability for nonlinear	(5)
		systems.	
		PART B	
		Answer any two full questions, each carries 10 marks.	
9		A unity feedback system has an open loop transfer function $G(S) = K/[S(1+2S)]$. Design a suitable lag compensator so that phase margin is 40° and the velocity error constant is 5.	(10)
10		Design a lead compensator for a unity feedback system with open loop transfer function $G(S) = K/[S(S+8)]$ to satisfy the following specifications. (1) Percentage overshoot = 9.5% (2) Natural frequency of oscillation=12 rad/sec (3) Velocity error constant \geq 10.	(10)
11	a)	Explain the Ziegler-Nichols method of tuning a PID controller.	(6)
	b)	What is meant by series compensation and feedback compensation in control systems?	(4)
		PART C	

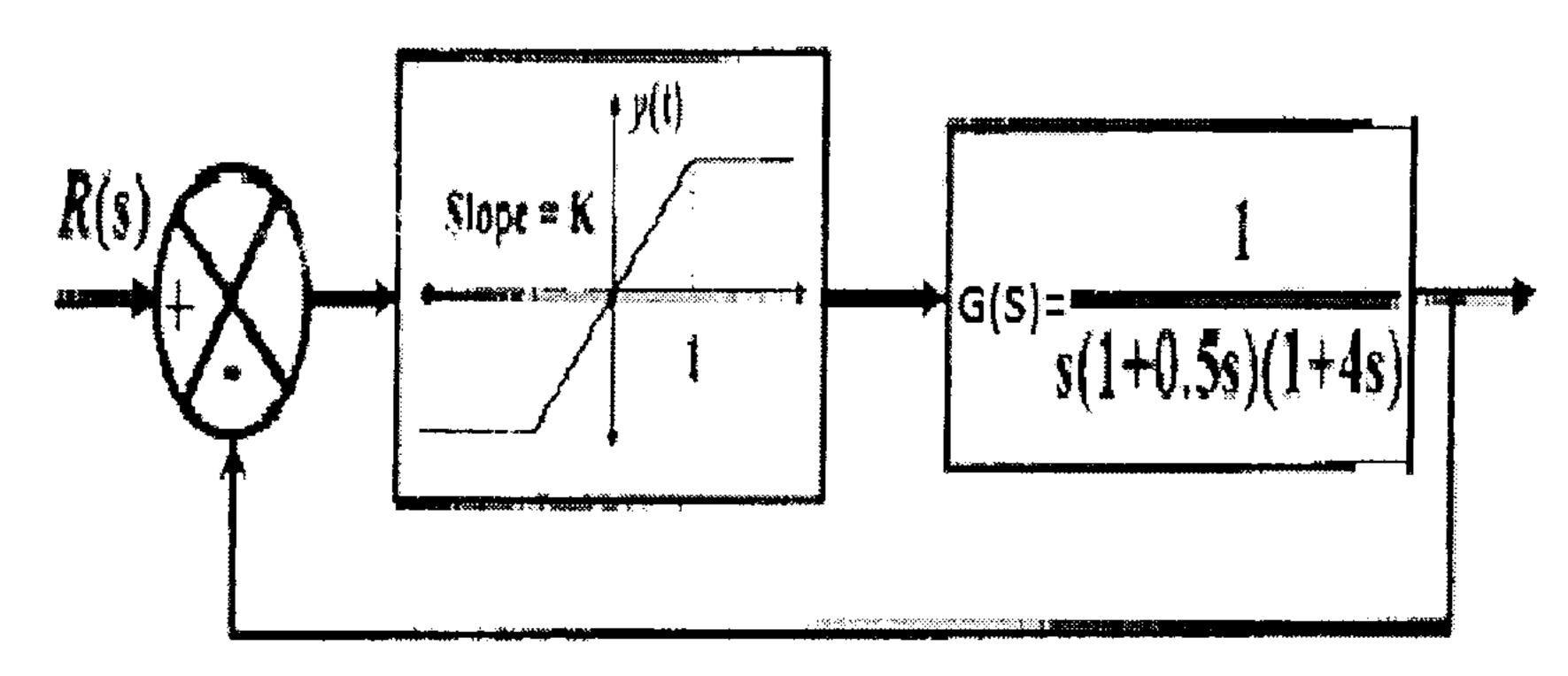

Answer any two full questions, each carries 10 marks.

15

- Define controllability and observability of a system and check a) (6) $\frac{Y(s)}{U(s)} = \frac{1}{(s+1)(s+2)}$ is controllable or whether the system not.
 - b) Check the stability of the sampled data control system shown (4)below

 $z^{3}-0.2z^{2}-0.25z+0.05=0$

13 Determine the pulse transfer function of the discrete time control system shown in figure for a sampling time of T=1 sec. Also find the response to unit step input. The transfer function of the system is G(s) = 1/(s+1).



- Derive the state model of an R-L-C series circuit 14 a) (3)
 - b) Consider a linear system described by the transfer function Y(s)/U(s) = 10/[S(S+1)(S+2)]. Design a feedback controller with a state feedback so that the closed loop poles are placed at -2, -1±j1.

PART D

Answer any two full questions, each carries 10 marks.

- -Derive the Describing function of saturation with Dead-zone nonlinearity.
- 16 Consider a unity feedback system shown in figure having a (10)saturating amplifier with a gain K. Determine the maximum value of K for the system to be stable. What would be the frequency and nature of limit cycle for a gain of K=2.5?

A linear second order system is described by the equation (10) $\ddot{e} + 2\delta\omega_n\dot{e} + \omega_n^2e=0$

LIGRARY

REFERENCE

Where $\delta = 0.15$, $\omega_n = 1 \text{rad/sec}$, e(0)=1.5, and $\dot{e}(0) = 0$

Determine the singular point and state the stability by constructing

the phase trajectory using the method of isoclines.
