

April and Carlo

Reg	No.:		
•••	1 1011		

Name:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE COMPREHENSIVE EXAMINATION, MAY 2019

Course Code: EE352
Course name: COMPREHENSIVE EXAM (EE)

		Cours	se na	me: COMPREHE	W21	VE EXAM (EE)					
Max.	Mark	s: 50						Duration: 1 Hour			
Instru	ctions:	(2) Total number of (3) All questions are which only ONE is	questice to be correct. correct. coption	answered. Each question	n will i	be followed by 4 possi dered for valuation.	ble ans	swers of			
1.		. ~ .	1								
	The	e infinite series $\sum_{n=1}^{\infty}$	$\frac{1}{n}^{p}$								
	a)	Converges if $p < 1$		Converges if $p > 1$	c)	Converges if $p = 1$	d)	Diverges if $p > 1$			
2.	The	e Wronskian of cos	s x and	d sin x is							
	a)	0	b)	$\cos^2 x - \sin^2 x$	c)	$2\cos x\sin x$	d)	1			
3.	The	The equivalent stiffness of two springs of stiffness s1 and s2 joined in series is									
	a)	s1s2/(s1+s2)	<u>b</u>)	(s1/s2)/(s1+s2)	c)	s1+s2	<u>d</u>)	s1s2			
4.			•	ving with a speed of erted by the wood or		•	n into	a fixed block of			
	a)	10kN	b)	20kN	c)	0kN	d)	15kN			
5.	Wh	Which among the following is not a Functional constraint?									
	a)	Overall Geometry	b)	Forces Involved	c)	Quality control	d)	Materials to be used			
6.		tructured planning ign:	metho	d used to evaluate w	veakn	ess, strength ,oppo	rtunit	ies and threats of			
	a)	SWOT analysis	b)	Design analysis	c)	WOST analysis	d)	Matrix design			
7.	Eut	Eutrophication of water bodies is caused by the presence of									
	a)	excessive dissolved oxygen	b)	Excessive dissolved CO ₂	c)	phosphorous and nitrogen nutrients	d)	Algae			
8.	A m	najor advantage of	Pyroly	sis in converting bid	omass	to energy is					
a	a)	its heating to	b)	that Carbon Dioxide is not produced	c)	the Oxygen generated as the by-product	d)	the absorption			
		1000° F						CO ₂ during the			
								process			

9.		hen the projectors are ojection is called	e pai	rallel to each other an	d als	o perpendicular to	the p	lane, the			
	a)	Perspective projection	b)	Oblique projection	c)	Isometric projection	d)	Orthographic projection			
10.	In.	AutoCAD, to obtain	para	allel lines, concentric	circl	es and parallel cur	ves; _	is used			
	a)	Array	b)	Fillet	c)	Сору	d)	Offset			
				PART B- COR	E C	OURSES					
11.	Sel	lf-bias provides									
1.4	a)	Stable Q point		High input impedance	c)	Large voltage gain	d)	High base current			
12.	Wł	nat is the range of an	FΕΊ	[input impedance?							
	a)	10Ω to $1k\Omega$	b)	$1k\Omega$ to $50k\Omega$	c)	$50k\Omega$ to $250k\Omega$	d)	$1M\Omega$ to several			
								hundred MΩ			
13.	The	The feed back signal inoscillator is derived from an inductive divider									
	a)	Hartley	b)	Colpitts	c)	Crystal	d)	Wien bridge			
14.	Op	en loop gain of an id	leal c	op-amp is							
	a)	high	b)	Infinite	c)	low	d)	zero			
15.				olifier using op-amp Determine CMRR in		s differential volta	age g	gain of 2000 and			
	a)	50dB	b)	60dB	c)	80dB	d)	70dB			
16.		multivibrate	or is	a square wave oscilla	tor						
	a)	Monostable		Astable	c)	Bistable	d)	None of the above			
17.	Zer	Zero crossing detector is basically									
18.		square wave converter		A Square wave to sine wave converter binary number 11010		A sine wave to triangle wave converter	d)	A sine wave to ramp voltage converter			
10.	a)	10001	b)	00100		00110	<i>4</i>)	00101			
19.	,	ich of the following	- /		c)	OOTTO	u)	00101			
		B)(A+C) is equal to									
	a)	AC+BC	b)	AB+C	c)	A+BC	d)	AC+B			
20.	A B	CD -to-decimal dec	oder	is			·				
	a)	A 3-line to 8-line decoder	b)	A 1-line to 10 line decoder	c)	A 4-line to 10- line decoder	d)	Any lines —to 10 line decoder			
21.	The	race around condition	n Ωα	ccurs in a J-K flip flo	n 117h	en		TO THIC UCCOUCT			
- 1 .							.1\	A			
	a)	Both inputs are 0.	O)	boin inputs are I	c)	The inputs are complementary	d)	Any one of the input			

33.	The	The no. of independent loops for a network with N nodes and B branches is								
	a)	N-1	b)	B-N	c)	B-N+1	d)	Independent of number of nodes		
34.	two	parallel combination of capacitated be				•				
	a)	CR	b)	2CR	c)	CR/4	d)	CR/2		
35.	ind	nen two coupled coils of uctance is 12 mH. When the maximum value of new seconds.	n th	ey are connected in	n the	other way, the net	indu	ctance is 4 mH.		
	a)	2mH	b)	3mH	c)	4mH	d)	6mH		
36.	A t	A two-port network is symmetrical if								
	a)	$Z_{12}=Z_{21}$	b)	AD-BC=1	c)	$Z_{11}=Z_{22}$	d)	$h_{12} = -h_{21}$		
37.	Αp	A polynomial q(s) is Hurwitz if								
	a)	q(s) is real when s is real	b)	q(s) is real and have real roots which are zero or negative	c)	q(s) has conjugate pair of complex roots	d)	None of these		
38.	Cho	oose a conventional sou	irce (of energy from the	follo	owing:				
	a)	Nuclear	b)	Wind	c)	Solar	d)	Tidal		
39.	Tra	nsposition of a 3 phase	tran	smission line help	s in _	of the	e 3 p	hases		
<u></u>	a) -	To find L and C	- b)-	Increasing L and C	c)	To reduce supply frequency	d)	Equalizing L and C		
40.	Pin	insulators are normally	use use	d up to voltage of	abou	t				
	a)	100 kV	b)	66kV	c)	33kV	d)	250kV		
41.	HV	HVDC transmission lines are more economical for								
42.	a) Dist	Long distance transmission tance Relays are used for	b) or th	Short distance transmission e protection of	c)	Interconnected System	d)	Hybrid System		
	a)	Generator	b)	Transformer	c)	Transmission line	d)	Bus bar		
43.	Buc	hholz relay is used to p	rote	ct against						
	a)	Internal fault	b)	External fault	c)	Rotor fault	d)	All of the above		
44.	Sele	ect a suitable winding fo	or D	C generator for gen	nerat	ing large current				
15	a)	Progressive wave winding	,	Lap winding	c)	Retrogressive wave winding	d)	Wave winding		
45.		efficiency of a dc machin Copper loss =			ر م	Eddy or most loss	٦١,	Constant I asser		
46.	a) Star	hysteresis loss ters are used in DC mo	b) tors	Hysteresis loss = Eddy current loss because	c)	Eddy current loss = Copper Loss	d)	Constant Loss= Variable Loss		

These motors have a) These motors Back emf of To restrict the d) low starting torque are not self these motors is armature starting high initially current at starting 47. Identify the circuit element that stores energy in the electromagnetic field Inductance Condenser Variable resistor resistance 48. Magnetising impedance of a transformer is determined by SC Test OC Test Both (a) and (b) Load Test 49. Satisfactory operation of three phase transformers in parallel requires Same voltage a) b) Same voltage Same voltage Same voltage rating, polarity, rating, rating, polarity, rating, frequency phase sequence, frequency and frequency and and percentage percentage vector group percentage impedance impedance and impedance vector group 50. The purpose of providing dummy coil in dc generator is For mechanical To reduce Eddy b) To reduce To increase a) current loss Balance Hysteresis loss *fficiency of COLLEGE OF ENGINEERS generator

LIERABY

REFERENCE

TRIVANU. UM-15 *