Reg No.:_____Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

EIGHTH SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019

Course Code: EE462 Course Name: Design of Digital Control Systems

Max. Marks: 100 Duration: 3 Hours

(Use of semilog sheet is permitted)

PART A

Answer all questions, each carries 5 marks.

Marks

- Derive the transfer function and obtain the frequency response characteristics of (5) zero order hold
- List the factors effecting the choice of sampling rate while discretization (5)
- How can a PID controller be configured as a lag compensator? (5)
- Explain in brief about direct design method of Ragazzini. (5)
- Explain the Z transform approach to find out the state transition matrix for (5) linear time invariant discrete time systems
- 6 Derive the expression for pulse transfer function matrix (5)
- What is mean by stabilizability and reachability of a digital control system? (5)
- 8 Explain Loss of controllability and observability due to sampling (5)

PART B

Answer any two full questions, each carries 10 marks.

- Explain a digital control system with the help of block diagram. Also give an (10) example for digital control system
- Find out C(Z) for the given system (10)

Obtain the Z transform of
$$x(t) = \begin{cases} e^{-at}, & t \ge 0 \\ 0, & t < 0 \end{cases}$$
 (5)

. . .

b) What is pulse transfer function? Obtain the pulse transfer function of a closed (5) loop discrete time system

PART C

Answer any two full questions, each carries 10 marks.

Consider the bode diagram approach in the w plane, design a digital controller (10) for the system shown in the figure. The design specifications are that the phase margin to be 50°, the gain margin to be at least 10 dB and the static velocity error constant be 20 sec⁻¹. T = 0.1 sec. Plant transfer function is $G_p(s) = \frac{K}{s(s+0.5)}$

- 13 a) What is dead beat response
 - b) Explain the design steps used for design of dead beat controller (
- Write the design steps for the design of lag compensator based on frequency (5) response method
 - b) What are the design steps involved in the design of compensator using root (5) locus method.

PART D

Answer any two full questions, each carries 10 marks.

A discrete time system has state equation given by (10) $(k+1) = \begin{bmatrix} 0 & 1 \\ -10 & -7 \end{bmatrix} x(k)$ Use Cayley-Hamilton theorem to find out its

state transition matrix

- 16 (a) Differentiate between Controllability and observability (4)
 - (b) Commend upon the controllability and reachability of the given system (6)

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

- 17 a) What is state transition matrix? Explain (5)
 - b) Derive the state controllability matrix for the system given by x((k+1)T) = Gx(kT) + Hu(kT)y(kT) = Cx(kT) (5)

Assume that u(kT) is constant for $kT \le t \le (k+1)T$